

Shelby County Schools Science Vision

Shelby County Schools' vision of science education is to ensure that from early childhood to the end of the 12th grade, all students have heightened curiosity and an increased wonder of science; possess sufficient knowledge of science and engineering to engage in discussions; are able to learn and apply scientific and technological information in their everyday lives; and have the skills such as critical thinking, problem solving, and communication to enter careers of their choice, while having access to connections to science, engineering, and technology.

To achieve this, Shelby County Schools has employed The Tennessee Academic Standards for Science to craft meaningful curricula that is innovative and provide a myriad of learning opportunities that extend beyond mastery of basic scientific principles.

Introduction

In 2014, the Shelby County Schools Board of Education adopted a set of ambitious, yet attainable goals for school and student performance. The District is committed to these goals, as further described in our strategic plan, Destination 2025. In order to achieve these ambitious goals, we must collectively work to provide our students with high quality standards aligned instruction. The Tennessee Academic Standards for Science provide a common set of expectations for what students will know and be able to do at the end of each grade, can be located in the <u>Tennessee Science Standards Reference</u>. Tennessee Academic Standards for Science are rooted in the knowledge and skills that students need to succeed in post-secondary study or careers. While the academic standards establish desired learning outcomes, the curriculum provides instructional planning designed to help students reach these outcomes. The curriculum maps contain components to ensure that instruction focuses students toward college and career readiness. Educators will use this guide and the standards as a roadmap for curriculum and instruction. The sequence of learning is strategically positioned so that necessary foundational skills are spiraled in order to facilitate student mastery of the standards.

Our collective goal is to ensure our students graduate ready for college and career. Being College and Career Ready entails, many aspects of teaching and learning. We want our students to apply their scientific learning in the classroom and beyond. These valuable experiences include students being facilitators of their own learning through problem solving and thinking critically. The Science and Engineering Practices are valuable tools used by students to engage in understanding how scientific knowledge develops. These practices rest on important "processes and proficiencies" with longstanding importance in science education. The science maps contain components to ensure that instruction focuses students toward understanding how science and engineering can contribute to meeting many of the major challenges that confront society today. The maps are centered around five basic components: the Tennessee Academic Standards for Science, Science and Engineering Practices, Disciplinary Core Ideas, Crosscutting Concepts, and Phenomena.

The Tennessee Academic Standards for Science were developed using the National Research Council's 2012 publication, <u>A Framework for K-12 Science</u> <u>Education</u> as their foundation. The framework presents a new model for science instruction that is a stark contrast to what has come to be the norm in science classrooms. Thinking about science had become memorizing concepts and solving mathematical formulae. Practicing science had become prescribed lab situations with predetermined outcomes. The framework proposes a three-dimensional approach to science education that capitalizes on a child's natural curiosity. The Science Framework for K-12 Science Education provides the blueprint for developing the effective science practices. The Framework expresses a vision in science education that requires students to operate at the nexus of three dimensions of learning: Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas. The Framework identified a small number of disciplinary core ideas that all students should learn with increasing depth

DRAFT

2019-2020

and sophistication, from Kindergarten through grade twelve. Key to the vision expressed in the *Framework* is for students to learn these disciplinary core ideas in the context of science and engineering practices. The importance of combining Science and Engineering Practices, Crosscutting Concepts and Disciplinary Core Ideas is stated in the *Framework* as follows:

Standards and performance expectations that are aligned to the framework must take into account that students cannot fully understand scientific and engineering ideas without engaging in the practices of inquiry and the discourses by which such ideas are developed and refined. At the same time, they cannot learn or show competence in practices except in the context of specific content. (NRC Framework, 2012, p. 218)

To develop the skills and dispositions to use scientific and engineering practices needed to further their learning and to solve problems, students need to experience instruction in which they use multiple practices in developing a particular core idea and apply each practice in the context of multiple core ideas. We use the term "practices" instead of a term such as "skills" to emphasize that engaging in scientific investigation requires not only skill but also knowledge that is specific to each practice. Students in grades K-12 should engage in all eight practices over each grade band. Crosscutting concepts have application across all domains of science. As such, they are a way of linking the different domains of science. Crosscutting concepts have value because they provide students with connections and intellectual tools that are related across the differing areas of disciplinary content and can enrich their application of practices and their understanding of core ideas. There are seven crosscutting concepts that bridge disciplinary boundaries, uniting core ideas throughout the fields of science and engineering. Their purpose is to help students deepen their understanding of the disciplinary core ideas and develop a coherent and scientifically based view of the world.

The map is meant to support effective planning and instruction to rigorous standards. It is *not* meant to replace teacher planning, prescribe pacing or instructional practice. In fact, our goal is not to merely "cover the curriculum," but rather to "uncover" it by developing students' deep understanding of the content and mastery of the standards. Teachers who are knowledgeable about and intentionally align the learning target (standards and objectives), topic, text(s), task, and needs (and assessment) of the learners are best-positioned to make decisions about how to support student learning toward such mastery. Teachers are therefore expected--with the support of their colleagues, coaches, leaders, and other support providers--to exercise their professional judgment aligned to our shared vision of effective instruction, the Teacher Effectiveness Measure (TEM) and related best practices. However, while the framework allows for flexibility and encourages each teacher/teacher team to make it their own, our expectations for student learning are non-negotiable. We must ensure all of our children have access to rigor—high-quality teaching and learning to grade level specific standards, including purposeful support of literacy and language learning across the content areas.

Science and Engineering	Disciplinary Core Ideas	Crosscutting Concepts
1. Asking questions & defining	Physical Science PS 1: Matter & its interactions	1. Patterns
problems	PS 2: Motion & stability: Forces & interactions PS 3: Energy	2. Cause & effect
2. Developing & using models	PS 4: Waves & their applications in technologies for information transfer	
 Planning & carrying out investigations 	Life Sciences LS 1: From molecules to organisms:	3. Scale, proportion, & quantity
4. Analyzing & interpreting data	structures & processes LS 2: Ecosystems: Interactions, energy, & dynamics LS 3: Heredity: Inheritance &	4. Systems & system models
5. Using mathematics & computational thinking	LS 4: Biological evaluation: Unity & diversity	5. Energy & matter
6. Constructing explanations & designing solutions	Earth & Space Sciences ESS 1: Earth's place in the universe ESS 2: Earth's systems ESS 3: Earth & human activity	6. Structure & function
7. Engaging in argument from evidence	Engineering, Technology, & the Application of Science	7. Stability & change
8. Obtaining, evaluating, & communicating information	ETS 2: Links among engineering, technology, science, & society	

Learning Progression

At the end of the elementary science experience, students can observe and measure phenomena using appropriate tools. They are able to organize objects and ideas into broad concepts first by single properties and later by multiple properties. They can create and interpret graphs and models that explain phenomena. Students can keep notebooks to record sequential observations and identify simple patterns. They are able to design and conduct investigations, analyze results, and communicate the results to others. Students will carry their curiosity, interest and enjoyment of the scientific world view, scientific inquiry, and the scientific enterprise into middle school.

At the end of the middle school science experience, students can discover relationships by making observations and by the systematic gathering of data. They can identify relevant evidence and valid arguments. Their focus has shifted from the general to the specific and from the simple to the complex. They use scientific information to make wise decision related to conservation of the natural world. They recognize that there are both negative and positive implications to new technologies.

As an SCS graduate, former students should be literate in science, understand key science ideas, aware that science and technology are interdependent human enterprises with strengths and limitations, familiar with the natural world and recognizes both its diversity and unity, and able to apply scientific knowledge and ways of thinking for individual and social purposes.

Structure of the Standards

- Grade Level/Course Overview: An overview that describes that specific content and themes for each grade level or high school course.
- Disciplinary Core Idea: Scientific and foundational ideas that permeate all grades and connect common themes that bridge scientific disciplines.

DRAFT

2019-2020

• Standard: Statements of what students can do to demonstrate knowledge of the conceptual understanding. Each performance indicator includes a specific science and engineering practice paired with the content knowledge and skills that students should demonstrate to meet the grade level or high school course standards.

Purpose of Science Curriculum Maps

This map is a guide to help teachers and their support providers (e.g., coaches, leaders) on their path to effective, college and career ready (CCR) aligned instruction and our

pursuit of Destination 2025. It is a resource for organizing instruction around the Tennessee Academic Standards for Science, which defines what to teach and what students need to learn at each grade level. The map is designed to reinforce the grade/course-specific standards and content (scope) and provides *suggested* sequencing, pacing, time frames, and aligned resources. Our hope is that by curating and organizing a variety of standards-aligned resources, teachers will be able to spend less time wondering what to teach and searching for quality materials (though they may both select from and/or supplement those included here) and have more time to plan, teach, assess, and reflect with colleagues to continuously improve practice and best meet the needs of their students.

The map is meant to support effective planning and instruction to rigorous standards. It is *not* meant to replace teacher planning, prescribe pacing or instructional practice. In fact, our goal is not to merely "cover the curriculum," but rather to "uncover" it by developing students' deep understanding of the content and mastery of the standards. Teachers who are knowledgeable about and intentionally align the learning target (standards and objectives), topic, text(s), task, and needs (and assessment) of the learners are best-positioned to make decisions about how to support student learning toward such mastery. Teachers are therefore expected--with the support of their colleagues, coaches, leaders, and other support providers--to exercise their professional judgment aligned to our shared vision of effective instruction, the Teacher Effectiveness Measure (TEM) and related best practices. However, while the framework allows for flexibility and encourages each teacher/teacher team to make it their own, our expectations for student learning are non-negotiable. We must ensure all of our children have access to rigor—high-quality teaching and learning to grade level specific standards, including purposeful support of literacy and language learning across the content areas.

	Physics Quarter 3 Curriculum Map Curriculum Map Feedback Survey										
	Quarter 1			Quarter 2			Quarter	Quarter 3 Quarter 4			
Unit 1 One Dimensional Kinematics	Unit 2 Two Dimensional Kinematic	Unit 3 Forces	Unit 4 Work and Energy	Unit 5 Momentum	Unit 6 Circular Motion and Gravitation	Unit 7 Heat Energy and Thermo.	Unit 8 Electric Forces, Fields and Energy	Unit 9 Capacitors, Resistors and Circuits	Unit 10 Waves and Sound	Unit 11 Light and Light Behaviors	Unit 12 Nuclear Physics
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	4 weeks	2 weeks
				UNIT 7: Heat B	nergy and The	rmo Energy	[2 weeks]				
				C	Overarching Qu	estion(s)					
				What is m	leant by conser	vation of en	ergy?				
Unit Losson		ccon Longt	h	How is energy tr	ansferred betw	een objects	or systems?		Vacabular		
Unit 7 Heat Energy an Thermo.	Unit 7 Heat Energy and 0.5 Weeks Thermo.		 What is heat? What is temperature? What is the relationship among temperature, heat, and internal energy? 			Heat,	Heat, Temperature, Internal energy, Thermal equilibrium, Conduction, Convection, Radiation				
Standards an	d Related Backg	ground Info	rmation	Instructional Focus				Instructional Resources			
DCI(s) PS3: Energy Standard(s) PHYS.PS3.2 Investigate conduction, convection, and radiation as a mechanism for the transfer of thermal energy Explanation Thermal energy is the energy of a system due to the motion of the particles in that system. One object can transfer its thermal energy to another object through the processes of heating or radiating. Convection and conduction are processes which			 Learning Outco Relate energy Descril tempe reaching Identif scales anothe Explain transfe that anothe 	temperature to of atoms and r be the changes ratures of two ng thermal equi y the various te and convert fro er. h heat as the en erred between s te at different to	o the kinetic molecules. in the objects ilibrium. emperature om one scale hergy substances emperatures	to Demor Demor Demor Demor Demor Demor Demor Demor Demor Discove Quick I STEM L	Ilar Materials tive Demonstrati ed Physics: <u>Heat</u> ab: Sensing Tem istration: Temper istration: Conduct istration: Interna e ery Lab: <u>Tempera</u> ab: <u>Sensing Tem</u> ab: <u>Thermal Exp</u>	on: <u>Temper</u> perature, TE rature and Ir tion, TE pg. I Energy, TE <u>ture and Int</u> <u>perature</u> <u>ansion</u>	ature Convers pg. 300 nternal Energy 310 pg. 311 eernal Energy	ions , TE pg.	

require a physical medium to transfer the thermal energy. In the case of conduction, two objects are in direct contact, while convection transfers thermal energy through a liquid or gaseous medium. Radiation is a unique form of energy transfer which can transfer without a medium. One packet of this energy is called a photon. The energy of the photon determines the effect that it will have when it interacts with matter. Low energy photons such a microwaves add to the motion of matter and result in an increase of the thermal energy. Photons carry energy from the sun to Earth.

Misconceptions

- Heat is a substance. Heat is not energy. Many students think of "cold" and "heat" as substances that flow from one object to another. Point out that in all cases, *energy* is transferred from one object to another. Heat and cold do not flow between objects, but the energy transferred does change the temperature of the objects involved because the distribution of internal energy changes. Also, be sure students understand that heat is not *in* a body; it is the amount of energy that is transferred between two bodies.
- Temperature is a property of a particular material or object. Some students do not recognize the universal tendency toward temperature equalization. Because metal sometimes feels colder than wood, students tend to believe that different materials in the same surroundings have

- Relate heat and temperature change on the macroscopic level to particle motion on the microscopic level.
- Apply the principle of energy conservation to calculate changes in potential, kinetic, and internal energy.

Suggested Phenomenon

Conduction, Convection and Radiation Heat energy is transferred by multiple mechanisms.

ature change Virtual Lab: Joule Heating

Explain

Section 9.1 Sample Problem Set I: Sample Problem A: <u>Temperature Conversion</u> Section 9.1 Sample Problem Set II: Sample Problem A:

Temperature Version

Classroom Practice: Temperature Conversions, TE pg.305 Interactive Reader: Section 9.1: <u>Temperature and Thermal</u> <u>Equilibrium</u>

Elaborate

Problem Solving: Deconstructing Problems, TE pg. 305 Classroom Practice: Conservation of Energy, TE pg. 312

<u>Evaluate</u>

Interactive: <u>Heat Concept Map</u> Section <u>9.1 Quiz</u> Section <u>9.2 Quiz</u> Ch 9 <u>Section Study Guides</u> Section <u>9.1 Formative Assessment, TE pg. 306</u> Section <u>9.2 Formative Assessment, TE pg. 313</u> Interactive Reader: <u>Chapter 9 Review</u>

<u>Textbook</u>

HMH TN Physics: Chapter 9

- Section 9.1 Temperature and Thermal Equilibrium; pgs. 300-306
- Section 9.2 Defining Heat; pgs. 307-313

Additional Resources

HMD Science Explore <u>Ch. 9: Heat</u> <u>Graphing Calculator</u> Ch 9 <u>SAT Bellringer Activity</u>

different terreneratures. Ask there to	Chudent Calence Standards Cuide, DC2 2 Canduation
different temperatures. Ask them to	Student Science Standards Guide: PS3.2 Conduction,
describe the direction of energy transfer	Convection, and Radiation pgs. 37-38
between a variety of objects made of	
different materials and the air surrounding	
them. Ask them when this transfer of	
energy would stop.	
• The temperature of an object depends on	
its size.	
• Heat and cold are different. Some students	
may confuse their perceptions of hot and	
cold with the temperature of an object:	
these students think that objects that feel	
hot have high temperatures and objects	
that fool cold have low temperatures	
that leef cold have low temperatures.	
Suggested Science and Engineering Practice	
Constructing evaluations and designing solutions:	
Constructing explanations and designing solutions.	
Students joint explanations that incorporate sources	
(including models, peer reviewed publications, their	
own investigations), invoke scientific theories, and	
can evaluate the degree to which data and evidence	
support a given conclusion.	
Suggested Cross Cutting Concepts	
Cause and Effect:	
Students use cause and effect models at one scale to	
make predictions about the behavior of systems at	
different scales.	

	Physics Quarter 3 Curriculum Map										
	Quarter 1			Quarter 2			<u>v</u> Quarter 3	3	Quarter 4		
Unit 1 One Dimensional Kinematics	Unit 2 Two Dimensional Kinematic	Unit 3 Forces	Unit 4 Work and Energy	Unit 5 Momentum	Unit 6 Circular Motion and Gravitation	Unit 7 Heat Energy and Thermo.	Unit 8 Electric Forces, Fields and Energy	Unit 9 Capacitors, Resistors and Circuits	Unit 10 Waves and Sound	Unit 11 Light and Light Behaviors	Unit 12 Nuclear Physics
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	4 weeks	2 weeks
				UNIT 7: Heat B	nergy and The	rmo Energy	[2 weeks]				
				C	Overarching Qu	estion(s)					
				What is m	eant by conser	vation of en	ergy?				
Unit Losson		scon Longt	h	How is energy tr	Eccential O	een objects	or systems?		Vaca	hulany	
Unit 7 Heat Energy and 0.5 Weeks Thermo.				 What is temperature? How the temperature of a substance change? What is heat capacity? How can we use heat capacity to describe the energy required to change the temperature of a substance? 			Heat, Ten heat, Hea l	Heat, Temperature, Internal energy, Specific heat, Heat capacity, Heat curve, Calorimetry, Phase change, Latent Heat			
Standards an	d Related Back	ground Info	ormation	Instructional Focus				Instructional Resources			
DCI(s) PS3: Energy Standard(s) PHYS.PS3.5 Construct an argument based on qualitative and quantitative evidence that relates the change in temperature of a substance to its mass and heat energy added or removed from a system. Evaluation			 Learning Outcomes Perform calculations with specific heat capacity. Interpret the various sections of a heating curve. Suggested Phenomenon Heating Curve of Water 			y. <u>Engage</u> e. Interactive Animated F <u>Heat</u> <u>Explore</u> Lab: <u>Conse</u> Virtual Lab: Skills Practi	Curricular Materials Engage Interactive Demonstration: Calorimetry Animated Physics: Specific Heat and Latent Heat Explore Lab: Conservation of Mechanical Energy Virtual Lab: Specific Heat of a Metal Skills Practice Lab: Specific Heat Capacity				
ExplanationWaterTwo different materials will undergo different degrees of temperature change even with the same $0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - $						30.6 31.1	<u>Explain</u>				

amount of energy added to each. Heat canacity is a	Heating Curve of Water	Classroom Practice: Calorimetry: TE/SE ng 317-
ratio (the slope of a temperature vs. heat added)	The idealized granh shows the temperature change of	318
that describes the change in temperature of a	$10.0 \mathrm{g}$ of ice as it is heated from $-25^{\circ}\mathrm{C}$ in the ice phase to	Problem Solving: Deconstructing Problems &
sample dependent on the amount of heating	steam above 125°C at atmospheric proscure (Note that	Take it Further: TE ngs 218-210
Empirical determination of the heat canacity of a	steam above -125 C at atmospheric pressure. (Note that	Soction 0.2 Sample Broblem Sot I: Sample
cubstance requires that both phase and mass of the	the norizontal scale of the graph is not uniform.)	Broblem C: Calorimetry
substance requires that both phase and mass of the		Section 0.2 Sample Problem Set II: Sample
substance are constants. Students can utilize		Section 9.3 Sample Problem Set II. Sample
proportional reasoning in the design of a second		Problem C: <u>Calorimetry</u>
portion of this experiment to determine the effect		Section 9.3 Sample Problem Set I: Sample
of mass on temperature change.		Problem D: <u>Heat of Phase Change</u>
		Section 9.3 Sample Problem Set II: Sample
Misconceptions		Problem D: <u>Heat of Phase Change</u>
 Students may be confused by the assertion 		
that direct measurement of heat is difficult.		
This is another opportunity to point out		Elaborate
that temperature and heat are not the		Interactive Reader: Section 9.3: Changes in
same.		Temperature and Phases
 Cold is transferred from one object to 		Why It Matters: Earth-Coupled Heat Pumps;
another. Energy will transfer from the		TE/SE pg. 318
hotter object to the cooler object.		
Therefore, the equilibrium temperature will		Evaluate
always be lower than the initial		Interactive: Heat Concept Map
temperature of the hotter object. Also		Section <u>9.3 Quiz</u>
students should make sure that their		Ch 9 Section Study Guides
answers for calorimetry problems reflect		Section 9.3 Formative Assessment, TE/SE pg.
the law of conservation of energy.		321
 Objects that keep things warm (sweaters. 		
mittens, blankets) are sources of heat.		Textbook
 Some substances (flour sugar air) cannot 		HMH TN Physics: Chapter 9
heat un		 Section 9.3 Changes in Temperature
 Objects that readily become warm 		and Phase: pgs. 315-321
(conductors of heat) do not readily become		
cold		Additional Resources
• Students know from lossens in chemistry		HMD Science Explore Ch. 9. Heat
 Students know from lessons in chemistry 		Granhing Calculator:
that heating and cooling can cause changes		

in the chemical properties of materials. To	TI-83/84 Graphing Calculator Activity Guide
from the physical process of phase change.	Sheet: <u>Heat Capacity</u> Ch 9 SAT Bellringer Activity
ask if a substance chemically changes in the	Student Science Standards Guide: PS3.5
course of melting or boiling.	Temperature Changes pgs. 43-44
Suggested Science and Engineering Practice Analyzing and interpreting data: Students should derive proportionalities and equalities for dependent variables which include multiple independent variables, considering uncertainty, and limitations of collected data.	
Suggested Cross Cutting Concepts	
Systems and System Models:	
Students design or define systems in order to	
evaluate a specific phenomenon or problem.	

Physics Quarter 3 Curriculum Map Quarter 3 Curriculum Map Feedback											
	Quarter 1			Quarter 2			Quarter 3			Quarter 4	
Unit 1 Dimensional Kinematics	Unit 2 Dimensional Kinematic	Unit 3 Forces	Unit 4 Work and Energy	Unit 5 Momentum	Unit 6 Circular Motion and Gravitation	Unit 7 Heat Energy and Thermo.	Unit 8 Electric Forces, Fields and Energy	Unit 9 Capacitors, Resistors and Circuits	Unit 10 Waves and Sound	Unit 11 Light and Light Behaviors	Unit 12 Nuclear Physics
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	4 weeks	2 weeks
				UNIT 7: Heat I	Energy and The	rmo Energy	[2 weeks]				
				(Overarching Qu	estion(s)					
What is meant by conservation of energy? How is energy transferred between objects or systems?											
Unit, Lesson Length Essential Q		uestion			Vocab	oulary					

Unit 7 Heat Energy and Thermo.	1 Week	 What is thermodynamics? What impact do the Laws of Therm have on machines? How is the temperature of a substate to the thermal energy of its atoms? What is the underlining principle be movement of heat by conduction, or and radiation? 	ance related ehind the convection
Standards and I	Related Background Information	Instructional Focus	Instructional Resources
DCI(s)		Learning Outcomes	Curricular Materials
PHYS.PS3: Energy		 Given a schematic of a refrigeration 	n process, Engage
		identify the four parts of the proces	ss. Interactive Demonstration: <u>The First Law of</u>
Standard(s)		 Describe all forms of heat exchange 	e. <u>Thermodynamics</u>
PHYS.PS3.7 Invest	igate and evaluate the laws of	• Distinguish between isovolumetric,	Animated Physics: <u>First Law of Thermodynamics</u>
thermodynamics a	and use them to describe internal	isothermal, and adiabatic thermody	ynamic Demonstration: Dispersion; TE pg. 350
energy, heat, and	work.	processes.	
		 Demonstrate a conceptual understand 	anding of Explore
Explanation		the First and Second Laws of Therm	nodynamics Lab: Entropy and Probability
Internal energy of	a system can be changed by either	and their implications in natural ph	enomena. Quick Lab: Entropy and Probability; TE/SE pg. 355
work or heat. For	example: If a system is defined as		
Earth's gravitation	al field, then lifting a lump of clay	Suggested Phenomenon	<u>Explain</u>
upwards increases	s the energy/instability of this	Energy Inputs and Outputs	Interactive Reader: <u>The First Law of</u>
system as the field	stores gravitational potential		Thermodynamics
energy. It can be s	aid that the person who lifted the	How much does the	Interactive Reader: <u>The Second Law of</u>
clay higher and hig	gher did work on the system. If the	internal energy of the system change?	Thermodynamics
person is removed	a, the clay will fall. As the clay falls	ojotom onango.	Classroom Practice: The First Law of
and strikes the gro	bund, the internal energy of the	U	Inermodynamics; IE/SE pgs. 343-344
gravitational field	decreases by heating the	+Q (Internal energy -Q	Classroom Practice: Heat-Energy Efficiency; TE/SE
Surroundings (the	ciay and surface it fails onto).	Heat added Heat give	pgs. 352-353
their operavis at a	minimum According to the law of	to system > by system	em Elaborato
conservation of er	a minimum. According to the law of	Work done	Interactive Reader: Ch. 10 Review
of the system mus	the the tenergy is transferred	by system	Section 10.2 Sample Problem Set I: Sample
to the surrounding	s Some of this energy can be		Problem B: The First Law of Thermodynamics
	s. Joine of this energy can be		i tobletti b. <u>The first law of thermodynamics</u>

utilized in designed systems to do productive work (e.g., lift something, turn something). In all cases, a portion of this energy will heat the surroundings by releasing photons of varying wavelengths. When a system loses energy and moves towards stability, the entropy of the universe increases.

Misconceptions

- Students tend to believe that W _{out} = W _{in} because volume increases and then decreases by the same amount as the piston returns to its original position. Remind students that W = P∆V applies only when pressure is constant.
- Students may be used to considering systems in isolation and may have trouble recognizing that most systems they think about are really part of larger systems.

Suggested Science and Engineering Practice Developing and using models

Students can create models for interactions of two separate systems.

Suggested Cross Cutting Concepts Stability and Change

Students provide examples and explanations for sudden and gradual changes.

Section 10.2 Sample Problem Set II: Sample Problem B: <u>The First Law of Thermodynamics</u> Section 10.3 Sample Problem Set I: Sample Problem C: <u>Heat-Engine Efficiency</u> Section 10.3 Sample Problem Set II: Sample Problem C: <u>Heat-Engine Efficiency</u> Why It Matters: Gasoline Engines; TE/SE pgs. 346-347 Why It Matters: Refrigerators; TE/SE pgs. 348-349 Why It Matters: Deep Sea Air Conditioning; TE/SE pg. 356

<u>Evaluate</u>

Interactive Concept Map: <u>Thermodynamics</u> Section <u>10.2 Quiz</u> Section <u>10.3 Quiz</u> Ch. 10 <u>Section Study Guide</u> Section 10.2 Formative Assessment, TE/SE pg. 347 Section 10.3 Formative Assessment, TE/SE pg. 355 Conceptual Challenge; TE/SE pg. 351

Textbook

HMH TN Physics: Ch. 10 Thermodynamics

- Section 2: The First Law of Thermodynamics; pgs. 340-347
- Section 3: The Second Law of Thermodynamics; pgs. 350-355

Additional Resources

HMD Science Explore <u>Ch. 10 Thermodynamics</u>
Graphing Calculator:
Chapter 10 Graphing Calculator Activity: <u>Carnot</u>
Efficiency

Chapter 10 SAT [©] <u>Bellringer Activity</u>

	Physics Quarter 3 Curriculum Map										
				Quarte	r 3 <u>Curriculum</u>	Map Feedba	ack				
	Quarter 1			Quarter 2			Quarter	Quarter 3 Quarter 4			
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9	Unit 10	Unit 11	Unit 12
One	Two	Forces	Work	Momentum	Circular	Heat	Electric	Capacitors,	Waves	Light and	Nuclear
Dimensional	Dimensional		and		Motion and	Energy	Forces,	Resistors and	and	Light	Physics
Kinematics	Kinematic		Energy		Gravitation	and	Fields and	Circuits	Sound	Behaviors	
						Thermo.	Energy				
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	4 weeks	2 weeks
				UNIT 8: Electri	c Forces, Fields,	and Energy	[4 weeks]				
				C	Overarching Qu	estion(s)					
			٧	Vhy are some ph	iysical systems i	more stable	than others?				
Unit, Lesson	Le	Lesson Length Essential Question					Vocabulary				
Unit 8 Electric Forces Fields and Energy	,	2 Weeks		 Which attraction What is Context What is Induction What is Induction What is Induction How is Induction How is Induction 	 Which combinations of charges attract? Which repel? What are charges doing when there is Conduction? What are charges doing when there is Induction? What are charges doing when there is Induction? What is grounding? How is Coulomb's law like Newton's law of Universal Gravitation? How is Coulomb's law different from the law of Universal Conviction? 					for this stando	ard.
Standards and Related Background Information Instructional Focus				us		Instru	uctional Res	ources			
DCI(s) PS2: Motion and Stability: Forces and Interactions Standard(s)			Learning Outcomes Calculate electric force using Coulomb's law.			Curricu Engage Demon Animat	Curricular Materials Engage Demonstration: Electric Force TE pg. 556 Animated Physics: Section 16.2: Coulomb's Law				

PHYS.PS2.10 Describe and mathematically determine the electrostatic interaction between electrically charged particles using Coulomb's law. Compare and contrast Coulomb's law and gravitational force, notably with respect to distance.

Explanation

Comparisons should note that both of these forces decrease proportional to the square of the distance and both are field interactions. Due to the nature of electric charge, it is possible that coulombic forces can be either attractive or repulsive depending on the charges, while gravitational forces are attractive. Descriptions of electrostatic fields should also include field line diagrams representing both strength and direction of the field in space.

Misconceptions

 Gravitational force is stronger than electrical force. The effects of the gravitational force are more apparent than the effects of the electric force in our typical experiences. These observations may cause some students to think that the gravitational force is stronger than the electric force. Remind students that the electric force between a proton and an electron is much larger than the gravitational force between the two particles.

Suggested Science and Engineering Practice Use Mathematics and Computational Thinking *Students differentiate between the appropriateness of quantitative and qualitative data. Students create*

- Compare electric force with gravitational force.
- Apply the superposition principle to find the resultant force on a charge and to find the position at which the net force on a charge is zero.

Suggested Phenomenon

Coulomb's Apparatus Coulomb's torsion balance was used to establish the inverse-square law for the electric force between two charges.

Explore

Open Inquiry Lab: <u>Electric Force</u> PhETb Lab: Section 7.2 PhET Simulation: <u>Gravity Force Lab</u>

Explain

Differentiated Instruction: ;TE pg. 556 Conceptual Challenge; TE/SE pg. 558 Problem Solving: Take It Further; TE pg. 557 Problem Solving: Take It Further; TE pg. 559 Problem Solving: Deconstructing Problems; TE pg. 561 Interactive Reader: <u>Electric Force</u> Interactive Concept Map: <u>Electric Force</u>

<u>Elaborate</u>

Classroom Practice: Coulomb's Law; TE pg. 557 Classroom Practice: The Superposition Principle; TE pg. 559-561 Classroom Practice: Equilibrium; TE pg. 561-562 Ch. 16 <u>Section Study Guide</u> Section 16.2 Sample Problem Set I: Sample Problem A: <u>Coulomb's Law</u> Section 16.2 Sample Problem Set II: Sample Problem A: <u>Coulomb's Law</u>

<u>Evaluate</u>

Section 2 Formative Assessment; TE/SE pg. 563 Section <u>16.2 Quiz</u> Conceptual Challenge; TE/SE pg. 558

<u>Textbook</u>

HMH TN Physics: Ch. 16 Electric Forces and Fields

• Section 2: Electric Force; pgs. 556-563

computational or mathematical models for	
interactions in the natural world, utilizing unit	Additional Resources
equivalencies.	Web Resource:
	HMD Science Explore: Ch. 16 Electric Forces and Fields
Suggested Cross Cutting Concepts	Graphing Calculator: TI-83/84 Graphing Calculator Activity
Cause and Effect	Guide Sheet: <u>Coulomb's Law</u>
Students use cause and effect models at one scale to	Student Science Standards Guide: PS2.10 Coulomb's Law
make predictions about the behavior of systems at	pgs. 25-26
different scales	

	Physics Quarter 3 Curriculum Man											
	Quarter 3 Curriculum Map Feedback											
	Quarter 1			Quarter 2			Quarter	3	Quarter 4			
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5 Unit 6 Unit 7 Unit 8			Unit 9	Unit 10	Unit 11	Unit 12		
One	Two	Forces	Work	Momentum	Circular	Heat	Electric	Capacitors,	Waves	Light and	Nuclear	
Dimensional	Dimensional		and		Motion and	Energy	Forces,	Resistors and	and	Light	Physics	
Kinematics	Kinematic		Energy		Gravitation	and	Fields and	Circuits	Sound	Behaviors		
						Thermo.	Energy					
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	4 weeks	2 weeks	
UNIT 8: Electric Forces, Fields, and Energy [4 weeks]												
		0	Overarching Que	estion(s)								
How are forces related to energy?												
Unit, Lesson	Le	esson Lengt	Length Essential Qu			uestion			Voca	bulary		
Unit 8 Electric Forces Fields and Energy	·,	2 Weeks		 How of interassystem What current How of touch How for touch I want 	Electrical control induction, of a second se	onductor, el	ectrical insulat , magnetic fiel	or, d.				
Standards an	d Related Back	ground Info	ormation	Instructional Focus					Instructional Resources			

DCI(s)

PS3: Energy

Standard

PHYS.PS3.9 Describe, compare, and diagrammatically represent both electric and magnetic fields. Qualitatively predict the motion of a charged particle in each type of field but avoid situations where the two types of fields are combined in the same region of space. Restrict magnetic fields to those that are parallel or perpendicular to the path of a charged particle.

Explanation

Students have explored the concept of non-contact forces in investigations of gravity, the effects of forces on the motion of an object and have discussed the capacity of fields to store energy. This standard unites these principles by considering the impact of an object changing position within a field. As a charge moves through a field, the changes in position (depending on the direction of motion) can result in a change to the potential energy stored by the field. A decrease in the potential energy stored in the field, coupled with the law of conservation of energy, implies that work has been done by the field. If the work being done is applied to a moving charge, the applied force will result in a change to the trajectory of the moving charge. Students should be able to qualitatively describe the force applied to the charge using right hand rules. Such discussions may also be used to relate to the function of electrical generation or electric motors through induction. A demonstration of the electromotive force and the effect of the orientation can be

Learning Outcomes

- Calculate electric force using Coulomb's law.
- Compare electric force with gravitational force.
- Apply the superposition principle to find the resultant force on a charge and to find the position at which the net force on a charge is zero.

Suggested Phenomenon

Curricular Materials

Engage

Demonstration: Magnetic Poles; TE pg. 666 Demonstration: Magnetic Domains; TE pg. 667 Demonstration: Magnetic Fields; TE pg. 668 Demonstration: Current-Carrying Wire; TE pg. 672

Explore

Quick Lab: <u>Magnetic Field of a File Cabinet</u>; TE/Se pg. 669 Discovery Lab: <u>Magnetism</u> Quick Lab: <u>Electromagnetism</u>; TE/SE pg. 673 Skills Practice Lab: <u>Magnetic Field of a</u> <u>Conducting Wire</u> Open Inquiry Lab: Magnetism From Electricity

Explain

Interactive Reader: <u>Magnets and Magnetic</u> <u>Fields</u> Problem Solving: Reality Check; TE pg. 669 Interactive Reader: <u>Magnetism from Electricity</u>

<u>Elaborate</u>

Interactive Concept Map: <u>Magnetic Fields</u> Why It Matters: Magnetic Resonance Imaging; TE/SE pg. 671

<u>Evaluate</u>

Section 19.1 Formative Assessment; TE/SE pg. 670 Section 19.2 Formative Assessment; TE/SE pg. 674 Section <u>19.1 Quiz</u> Section <u>19.2 Quiz</u>

observed using an electrical extension cord,	Ch. 19 Section Study Guide
unplugged with a galvanometer connecting the two	Interactive Reader: Chapter 19 Review
ground prongs. If the cord is twirled through Earth's	
magnetic field, deflection will be observed.	Textbook
	HMH TN Physics: Ch. 19 Magnetism
Suggested Science and Engineering Practice	 Section 1: Magnets and Magnetic
Constructing explanations and designing solutions	Field; pgs. 666-670
Students form explanations that incorporate sources	 Section 2: Magnetism from Electricity
(including models, peer reviewed publications, their	
own investigations), invoke scientific theories, and	Additional Resources
can evaluate the degree to which data and evidence	Web Resource:
support a given conclusion.	HMD Science Explore Ch. 19 Magnetism
	Graphing Calculator: TI-83/84 Graphing
Suggested Cross Cutting Concepts	Calculator Activity Guide Sheet: Solenoids
Cause and Effect	Student Science Standards Guide: PS3.9 Electric
Students use cause and effect models at one scale to	and Magnetic Fields pgs. 51-52
make predictions about the behavior of systems at	
different scales	

Physics Quarter 3 Curriculum Map Quarter 3 Curriculum Map Feedback											
Quarter 1			Quarter 2			Quarter 3			Quarter 4		
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9	Unit 10	Unit 11	Unit 12
One	Two	Forces	Work and	Momentum	Circular	Heat	Electric	Capacitors,	Waves	Light and	Nuclear
Dimensional	Dimensional		Energy		Motion and	Energy	Forces,	Resistors and	and	Light	Physics
Kinematics	Kinematic				Gravitation	and	Fields and	Circuits	Sound	Behaviors	
						Thermo.	Energy				
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	4 weeks	2 weeks
UNIT 9: Capacitors, Resistors and Circuits [3 Weeks]											
Overarching Question(s)											
How is energy transferred between objects or systems?											
Unit, Lesson	Unit, Lesson Lesson Length			Essential Question					Voca	bulary	

Unit 9 Capacitors, Resistors and Circuits	1 Week	 Calculate the equivalent capacitance of a series or parallel combination. Describe how stored charge is divided between capacitors connected in parallel. Calculate the voltage or stored charge, under steady-state conditions, for a capacitor connected to a circuit consisting of a battery and resistors. 	Electrical potential energy. electric potential, potential difference, capacitance, electric current, drift velocity, resistance.		
Standards and F	Related Background Information	Instructional Focus	Instructional Resources		
DCI(s) PS3: Energy Standard(s) PHYS.PS3.10 Devel etc.) of a resistor c to illustrate the be	lop a model (sketch, CAD drawing, ircuit or capacitor circuit and use it havior of electrons, electrical	 Learning Outcomes Relate capacitance to the storage of electrical potential energy in the form of separated charges. Calculate the capacitance of various devices Calculate the energy stored in a capacitor. 	<u>Curricular Materials</u> <u>Engage</u> Demonstration: Capacitor Discharge; TE pg. 591 Demonstration: Functions of a Capacitor; TE pg. 593 Interactive Demonstration: <u>Capacitance</u>		
charge, and energy	y transfer.	Suggested Phenomenon	Explore Capacitators Lab Virtual Lab: BC Circuits		
and how charge flo series or parallel.	ows among capacitors connected in	A parallel-plate capacitor is often used in keyboards.	Explain Problem Solving: TE pg 594		
Explanation Parallel plate capa electric potential of Charges can flow of poles are connected difference across t difference of the c disconnected from difference remains the two ends are of return to their equi in capacitors shoul	citors provide a means to store an lifference across the two plates. onto or off the two plates when the ed to a battery, until the potential he plates is equal to the potential onnected battery. When a the source, the potential is in place across the capacitor. If connected the two plates will hipotential state. The flow of charge id be explained by considering the	Key Movable metal plate	Interactive Reader: <u>Section 17.2 Capacitance</u> Interactive Concept Map: <u>Electricity</u> <u>Elaborate</u> Conceptual Challenge: TE pg. 592 Section 17.2 Sample Problem Set I: Sample Problem B: <u>Capacitance</u> Section 17.2 Sample Problem Set II: Sample Problem B: <u>Capacitance</u> <u>Evaluate</u>		

point where charge ceases to flow due to the entire	Section 17.2 Formative Assessment; TE/SE pg.
circuit having equal potential differences and	595
justifying why current has stopped. A charged	Section <u>17.2 Quiz</u>
capacitor creates an electric field with the capacity to	Ch. 17 <u>Section Study Guide</u>
do work	<u>Textbook</u>
	HMH TN Physics: Ch. 17: Electrical Energy and
<u>Misconceptions</u>	Current
 Charges moving in a circuit are always 	Section 2: Capacitance
positive.	
• Charge carriers move at the speed of light.	Additional Resources
• Resistance is a variable that can change, like	Web Resource:
force or acceleration.	HMH Ch. 17 Electrical Energy & Current
	Student Science Standards Guide: PS3.10
Suggested Science and Engineering Practice	Circuits pgs. 53-54 & PS3.13 Capacitators and
Developing and using models	Circuits pgs. 59-60
Students can create models for the interactions of	
two separate systems. Students can test the	
predictive abilities of their models in a real world	
setting and make comparisons of two models of the	
same process or system.	
Suggested Cross Cutting Concepts	
Stability and Change	
Students provide examples and explanations for	
sudden and gradual changes.	

Physics Quarter 3 Curriculum Map Quarter 3 <u>Curriculum Map Feedback</u>											
Quarter 1			Quarter 2			Quarter 3			Quarter 4		
Unit 1	Unit 2	Linit 2	Unit 4		Unit 6	Linit 7	Lipit 9	Unit 9	Unit 10	Unit 11	Unit 10
One	Two	Forcos	Work	Unit 5	Circular	Hoat	Electric	Capacitors,	Waves	Light and	Nuclear
Dimensional	Dimensional	Forces	and	Momentum	Motion and	Enorgy	Electric	Resistors and	and	Light	Physics
Kinematics	Kinematic		Energy		Gravitation	Lifeigy	Forces,	Circuits	Sound	Behaviors	FILYSICS

						and Thermo	Fields and				
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	4 weeks	2 weeks
				UNIT 9: Capaci	tors, Resistors	and Circuits	[3 Weeks]				
Overarching Question(s)											
Unit, Lesson	Le	esson Lengt	h		Essential C	Question			Vocal	oulary	
Unit 9 Capacitors, 1 Week Resistors and Circuits			 How are electric current, resistance and voltage related? 				Electrical potential energy. electric potential, potential difference, capacitance, electric current, drift velocity, resistance.				
Standards ar	d Related Back	ground Info	ormation		Instruction	al Focus		Instructional Resources			
DecisyPS3: EnergyStandard(s)PHYS.PS3.11 Investigate Ohm's law (I=V/R) by conducting an experiment to determine the relationships between current and voltage, current and resistance, and voltage and resistance.Explanation Models can include the use of simulations. The focus of the models should be on the flow of charge and the utilization of energy within the circuit. It is important that students recognize that heat dissipated by resistors represents energy lost from the system that did not do effective work. (Extreme care should be taken if capacitors are used in the class.)Ohm's law relates the current through a device or portion of a circuit to the voltage drop observed across that device. The voltage drop across a device				Learning Outc • Descr curre charg • Distin charg • Calcu differ • Distin mater resist • Interp	omes ibe the basic pr nt, and solve pr e, and time. guish between e carrier and th e carrier between late resistance, ence by using t guish between rials and learn v ance. oret and constr	roperties of a roblems rela the drift spe- ne average sp current, and he definition ohmic and r what factors uct circuit di	electric ting current, eed of a beed of the s. d potential n of resistance. non-ohmic affect agrams	Curricular Materials Engage Demonstration: Drift Speed; TE pg. 599 Demonstration: Non-Ohmic Resistance; TE pg. 601 Demonstration: Factors That Affect Resistance; TE pg. 601 Interactive Demonstration: Current Interactive Demonstration: Resistance Animated Physics: Ohm's Law Virtual Lab: A Lemon Battery; TE/SE pg. 598 Virtual Lab: Ohm's Law Virtual Lab: RC Circuits Skills Practice Lab: Current and Resistance Explain Classroom Practice: Current; TE/SE pg. 597 Classroom Practice: Resistance; TE/SE pg. 602-603			

will increase in a linear fashion as the current through that device is increased. The resistance of the device is given by the ratio of voltage drop to current across the device. In an ohmic device, this ratio will be constant. Simple, single-loop circuits may be analyzed by considering each resistor as part of the total (equivalent) resistance of the circuit. (It may be beneficial to describe non-ohmic devices, but such devices are beyond the scope of this standard.)

Misconceptions

- Some student may thing that charges moving in a circuit are always positive. Stress that charge curriers can be positive, negative, or a combination of the two.
- Some student may have the misconception that charge carriers move at the speed of light. When discussing the concepts of drift velocity, address the misconception directly with students.
- Some students may develop the idea that resistance is a variable that can change, like force or acceleration. Emphasize that the resistance of an object is more like mass (assuming temperature remains constant).
- Once a resistor is built, it usually has a fixed resistance. The resistance of a circuit can be changed by adding or changing resistors just as adding mass to an object changes its total mass

Suggested Science and Engineering Practice Planning and Carrying Out Controlled Investigations *Students plan and perform investigations to aid in the development of a predictive model for interacting* **Current** The current in this wire is defined as the rate at which electric charges pass through a cross-sectional area of the wire.

Interactive Reader: <u>Current and Resistance</u> Section 17.3 Sample Problem Set I: Sample Problem C: <u>Current</u> Section 17.3 Sample Problem Set II: Sample Problem C: <u>Current</u> Section 17.3 Sample Problem Set I: Sample Problem D: <u>Resistance</u> Section 17.3 Sample Problem Set II: Sample Problem D: <u>Resistance</u>

<u>Elaborate</u>

Problem Solving: Take It Further; TE pg. 597 Why It Matters: Superconductors; TE/SE pg. 605

<u>Evaluate</u>

Conceptual Challenge; TE/SE pg. 599 Section 3 Formative Assessment; TE/SE pg. 604 Interactive Reader: <u>Ch. 17 Review</u> Section <u>17.3 Quiz</u>

Textbook

HMH TN Physics: Ch. 17 Electrical Energy and Current

• Section 17.3 Current and Resistance; pgs. 596-604

Additional Resources

Web Resource: HDM Science Explore: <u>Ch. 17 Electrical Energy</u> and <u>Current</u> Graphing Calculator: <u>Resistance and Current</u> <u>Activity</u>; <u>Students Activity Sheet</u> Ch. 17 <u>Section Study Guide</u>

variables, consider the quantity of data with respect to experimental uncertainty, and select methods for collection and analysis of data.	
Suggested Cross Cutting Concepts Stability and Change Students provide examples and explanations for sudden and gradual changes.	

Physics Quarter 3 Curriculum Map												
Quarter 3 <u>Curriculum Map Feedback</u>												
	Quarter 1			Quarter 2		Quarter 3		Quarter 4				
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9	Unit 10	Unit 11	Unit 12	
One	Two	Forces	Work and	Momentum	Circular	Heat	Electric	Capacitors,	Waves	Light and	Nuclear	
Dimensional	Dimensional		Energy		Motion and	Energy	Forces,	Resistors and	and	Light	Physics	
Kinematics	Kinematic				Gravitation	and	Fields and	Circuits	Sound	Behaviors		
						Thermo.	Energy					
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	4 weeks	2 weeks	
UNIT 9: Capacitors, Resistors and Circuits [3 Weeks]												
Overarching Question(s)												
Unit, Lesson	Le	esson Lengt	th		Essential Q	uestion			Vocabulary			
Unit 9 Capacitors, Resistors and Circuits		1 Week		 How do I construct series and parallel circuits? What are some devices and procedures for maintaining electrical safety? 			P Electrical potential energy. electric potential, potential difference, capacitance, electric current, drift velocity, resistance.					
Standards and Related Background Information				Instructional Focus					Instructional Resources			
DCI(s)			Learning Outcomes			Curricular N	Curricular Materials					
PS3: Energy			Calculate the equivalent resistance for a circuit				it *Activities fi	*Activities from this unit can be used for this				
<u>Standard(s)</u>			of resistors in series and find the current in and potential difference across each resistor in			<i>standard.</i> n						
				the circuit.			Lab- <u>Resistors in Series and in Parallel</u>					

PHYS.PS3.12 Apply the law of conservation of energy and charge to assess the validity of Kirchhoff's loop and junction rules when algebraically solving problems involving multi-loop circuits.

Explanation

Analysis of circuits using Ohm's Law is efficient for small, simple circuits. In more complex circuits, it is beneficial to evaluate the flow of charge and potential drops using Kirchhoff's Rules. These rules present an excellent opportunity to consider conservation laws. The junction rule reflects a conservation of charge, while the loop rule addresses conservation of energy for a unit of charge. This may be presented by considering the capacity of each charge to either do work or produce heat. In a complete loop, all of that capacity will have been eliminated.

Misconceptions

- current is used up in the resistor.
- In the closed-circuit current comes back to the battery but has decreased in magnitude.

Suggested Science and Engineering Practice Using Mathematics and Computational Thinking *Students can apply and test computational models for the function of a device.*

Suggested Cross Cutting Concepts Energy and Matter

Students demonstrate and explain conservation of mass and energy in systems including systems with inputs and outputs.

- Calculate the equivalent resistance for a circuit of resistors in parallel. Find the current in and the potential difference across each resistor in the circuit.
- Calculate the equivalent resistance for a complex circuit involving both series and parallel portions.
- Calculate the current in and potential difference across individual elements within a complex circuit.

Suggested Phenomenon

(a)

(b)

A Household Circuit (a) When all of these devices are plugged into the same household circuit, (b) the result is a parallel combination of resistors in series with a circuit breaker.

Lab-<u>Series and Parallel Circuits</u> Virtual Lab-<u>Series and Parallel Circuit</u>:

<u>Textbook</u>

HMH TN Physics:

Ch. 17 Electrical Energy & Current

- Section 17.2 pgs. 590-595
- Ch. 18 Circuit and Circuit Elements
 - Section 18.1 pgs. 630-635
 - Section 18.2 pgs. 637-646

Additional Resources Web Resource:

HMH Ch. 18 <u>Circuit and Circuit Elements</u> Science Standards Guide: PS3.12: Kirchhoff Loop and Junction Rules; pgs. 57-58

Curriculum and Instruction- Science										
RESOURCE TOOLKIT										
Quarter 3 Physics										
Textbook Resources	DCIs and Standards	Videos	Additional Resources							
	DCI(s)	Khan Academy	ACT & SAT							
HMH TN Physics	PS3: Energy		TN ACT Information & Descurace							
HMH Online	PS2: Motion and Stability		TN ACT Information & Resources							
		Discovery Education	ACT College & Career Readiness							
	<u>Standard(s)</u>	The Futures Channel	Mathematics Standards							
	PHYS.PS3.2	The Teaching Channel	SAT Connections							
	PHYS.PS3.5	Tooshortube.com	SAT Practice from Khan Academy							
	PHYS.PS3.7	<u>reachentube.com</u>	<u>on rhadioo nom than toddomy</u>							
	PHYS.PS2.10	Acceleration Lab:								
	PHYS.PS3.9	Bungee Jump Accelerations								
	PHYS.PS3.13									
	PHYS.PS3.11									
	PHYS.PS3.10									
	PHYS.PS3.12									